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ABSTRACT 
 
Cardiac fibrosis, a hallmark of numerous cardiovascular diseases, 
is strongly associated with adverse outcomes such as heart failure. 
However, current therapies remain ineffective in halting its 
progression, largely because the underlying mechanisms and 
pathways are poorly understood. Traditional laboratory validation 
of candidate biomarkers is often labor-intensive, costly, and time-
consuming. Hence, computational approaches have emerged as 
powerful tools to accelerate the identification of candidate 
biomarkers. This study, therefore, aims to identify key regulators 
and candidate biomarkers associated with cardiac fibrosis 
following acute myocardial infarction (AMI). Using an integrated 
bioinformatic approach, we retrieved eligible microarray datasets 
from the Gene Expression Omnibus (GEO) repository, identify 
differentially expressed genes (DEGs), constructed protein–protein 
interaction (PPI) networks, identify hub genes, and predicts the 
transcription factor–gene regulatory relationships and microRNA–
mRNA regulatory networks. As a result, we found only GSE775 
and GSE4648 datasets that met our criteria. Across shared 24 h and 
48 h time points, we identified 565 common DEGs. Functional 
enrichment analysis revealed that inflammatory response and IL-
17 signaling pathway are the major contributors to cardiac fibrosis 
progression. Network-based analysis revealed six highly connected 
hub genes - Il1b, Itgam, Ccl2, Mmp9, Il6, and Ptgs2 - as central 
regulators of the fibrotic response.  These hub genes are shown to 
be modulated by a network of transcription factors (NF-KB1, 
PPARA, FOS, EGR-1, and CEBPB) and microRNAs (mmu-miR-

223-3p, mmu-miR-196b-5p, mmu-miR-181a-5p, mmu-miR-122-
5p, and mmu-let-7c-5p), suggesting a multi-layered regulation of 
cardiac fibrosis progression. Collectively, the findings identify 
potential key regulators and candidate biomarkers of cardiac 
fibrosis following AMI. This integrative approach provides 
insights for future mechanistic studies, cross-species validation 
efforts and therapeutic exploration in cardiac fibrosis post-AMI.  
 
 
INTRODUCTION 
 
Cardiac fibrosis is a chronic scarring condition in the cardiac 
muscle characterized by the excessive and continuous deposition 
of extracellular matrix (ECM) proteins, particularly collagen type I 
deposition, which leads to impaired cardiac tissue function (Murtha 
et al. 2017). Fibrotic scarring of the cardiac muscle most often 
occurs after myocardial infarction, but other conditions, such as 
hypertensive heart disease, diabetic hypertrophic cardiomyopathy, 
and idiopathic dilated cardiomyopathy, also promote cardiac 
fibrosis (Hinderer & Schenke-Layland 2019). Currently, no FDA-
approved drugs exist for treating cardiac fibrosis. This is partly 
because noninvasive methods like echocardiography cannot 
accurately measure fibrotic burden, and cardiac tissue samples are 
typically only available through invasive endomyocardial biopsies 
or during cardiac surgery (Travers et al. 2022). Most conventional 
therapies do not directly target fibrosis but instead address 
underlying cardiac dysfunction mechanisms, which are ineffective 
at slowing the progression of cardiac fibrosis (Zhang et al. 2018). 
Due to this therapeutic limitations, studies in biomarker discovery 
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has increased as essential tools in the fight against cardiac fibrosis 
and its critical role in the prognosis of cardiovascular diseases 
(Ding et al. 2020). 
 
Due to the labor-intensive, costly, and time-consuming nature of 
traditional laboratory validation of biomarkers that uses in vitro and 
in vivo models, various computational methods have been 
developed to significantly accelerate the identification of candidate 
biomarkers (Yang et al. 2022). The most significant advanced 
analytical methods developed include high-throughput sequencing, 
microarray technologies, and bioinformatics. These innovations 
have enabled the discovery of key genes, molecular pathways, 
biological processes, and cellular behaviors, as well as a deeper 
understanding of critical genetic variations in cardiac fibrosis (Reid 
et al. 2016; Schafer et al. 2017). Despite advances in 
transcriptomics and microarray bioinformatics, there are still very 
scarce studies identifying potent biomarkers linked to cardiac 
fibrosis following AMI. To our knowledge, this is the first in silico 
study focused on cardiac fibrosis using a publicly available 
microarray dataset from a mouse model of AMI. This study, 
therefore, aims to identify key regulators and candidate biomarkers 
associated with post-AMI cardiac fibrosis by analyzing the gene 
expression data of heart tissues from the AMI mouse model from 
the Gene Expression Omnibus (GEO) database. 
 
 
MATERIALS AND METHODS 
 
Obtaining microarray gene expression datasets of interest 
The overall analysis is outlined and represented in Figure 1 
(Supplementary material). We downloaded the eligible microarray 
datasets from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). We analyzed and compared 
the gene expression profiles of the left ventricle (LV) of mice 
undergoing a sham operation (control group) and the infarcted 
tissue (IF) of AMI animals (experimental group) derived from 
GSE775 (Tarnavski et al. 2004) and GSE4648 (Harpster et al. 
2006). The samples from the selected datasets were hybridized 
based on Affymetrix Murine Genome U74A Version 2 Array 
[MG_U74Av2] on a platform GPL81 (Affymetrix, Santa Clara, 
CA, USA). 
 

 
Figure 1: The overlapping upregulated and downregulated common 
DEGs between GSE775 and GSE4648 microarray datasets using Venn 
diagram. (A & B) 24h and (C & D) 48h. 

Identification of differentially expressed genes (DEGs) 
By examining the raw expression data of GSE775 and GSE4648, 
differentially expressed genes (DEGs) between the AMI and sham-
control groups were identified using the open web-based program, 
GEO2R. The shared time points - 1 h, 4 h, 24 h, and 48 h - between 
the two datasets were used for the subsequent analysis. Time points 
in only one dataset were disregarded to increase the study's 
accuracy. The entire gene expression dataset was normalized using 

the quantile normalization technique, and log2 transformed if 
necessary. It’s considered statistically significant if a DEG’s | log2 
fold change | > 1 and its adjusted P < 0.05. In the following analysis, 
DEGs that were consistently upregulated and downregulated in 
both datasets were identified using the online Venn Diagram tool 
(http://bioinformatics.psb.ugent.be/webtools/Venn/). GraphPad 
Prism version 10.0.3 was used to create heat maps and volcano 
charts. When multiple probes mapped to the same gene, the 
expression of the gene was ascertained determined by taking the 
mean. 
 
Analysis of protein interaction networks and hub gene selection  
Using the default settings of the Search Tool for Retrieval 
Interacting Genes (STRING) version 11.5 database (https://string-
db.org/), we constructed the protein-protein interactions (PPI) 
network and the interacting proteins connected to DEGs 
(Szklarczyk et al. 2019). We restricted the species to "Mus 
musculus," and the confidence score was set at >0.4 (medium 
confidence score). The network's disconnected nodes were 
excluded. In the PPI network, a protein is represented as a node, 
and its interactions are represented as edges. The PPI network was 
displayed using Cytoscape v 3.10.1 (http://www.cytoscape.org/) 
(Shannon et al. 2003). Molecular Complex Detection (MCODE) 
plug-in of Cytoscape was used to extract top significant modules 
from the PPI network based on the following criteria: (i) "Degree 
cutoff = 2," (ii) "node score cutoff = 0.2," (iii) "k-core = 2," and 
(iv) "max depth = 100" (Bader & Hogue, 2003).  The hub genes 
were identified using the built-in maximal clique centrality (MCC) 
algorithm of the Cytohubba plug-in for Cytoscape, which 
performed better (Chin et al. 2014). Using the online tool Draw 
Venn Diagram 
(http://bioinformatics.psb.ugent.be/webtools/Venn/), the 
overlapping hub genes between time points and major modules 
were discovered. Only hub genes were used for the subsequent 
analysis. 
 
Pathway Enrichment and Functional Annotation Analysis 
Both the Gene Ontology (GO) analysis (Ashburner et al. 2000) and 
the KEGG pathway analysis (Ogata et al. 1999) were analyzed 
using the Metascape database 
(https://metascape.org/gp/index.html#/main/step1) (v3.5, San 
Diego, CA, USA) (Zhou et al. 2019). This analysis included the 
biological process, cellular component, and molecular function. 
The analysis was run under the default parameters: (i) A minimum 
count of three candidate proteins; (ii) An enrichment factor of >1.5. 
The information was collected and grouped according to how 
similar the members were. As the cutoff criterion, a significant 
level of P < 0.05 is established. To obtain the function and pathway 
terms for further visualization, GraphPad Prism version 10.0.3 was 
utilized. 
 
Predicting Transcription Factor-Hub Gene Interactions 
We used TRRUST (Transcriptional Regulatory Relationships 
Unraveled by Sentence-based Text Mining) (Han et al. 2018), an 
online database, to predict the transcriptional regulatory networks 
capable of regulating the identified common hub genes. TRRUST 
produced an adjusted P-value, a significant level of P < 0.05 is 
established. Presented are only the TFs that were confirmed to be 
DEGs in both datasets at 24h and 48h. 
 
miRNA prediction for the hub genes 
Using the miRNet program, we created the miRNA-mRNA 
regulatory network and predicted the miRNAs for the hub genes' 
important mRNAs, which we acquired from CytoHubba (Chang et 
al. 2020). The essential network, including all the seed genes, was 
also found by analyzing the created network using the Steiner 
Forest network (SFN) approach (Akhmedov et al. 2017). 
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Statistical analysis 
For the statistical analysis, GraphPad Prism version 10.0.3 was 
utilized. The hub gene and transcription factor expression levels 
were validated using GSE775, and GSE4648. The statistical 
method employed to compare the expression levels between the 
AMI and sham-control groups was the independent sample t-test. 
If a P-value was < 0.05, it was deemed statistically significant. 
 
 
RESULTS AND DISCUSSION 
 
Gene expression analysis varies across datasets 
Differentially expressed genes (DEGs) related to cardiac fibrosis 
following AMI were identified at four common time points (1h, 4h, 
24h, and 48h) using datasets GSE775 and GSE4648. A total of 
3,364 DEGs were detected in GSE775 and 759 in GSE4648 
(Supplementary Table 1A). Notably, the number of DEGs 
increased progressively with time, suggesting a dynamic 
transcriptional response as cardiac injury and remodeling advance. 
The temporal patterns of DEG distribution are illustrated by 
volcano plots in Figures 2 and 3 (Supplementary Material), 
highlighting the magnitude and direction of gene expression 
changes across both datasets. 
 
Common DEGs between GSE775 and GSE4648 at each time point 
were identified using Venn diagram analysis, yielding a total of 571 
shared genes (Supplementary Table 1B). No overlapping DEGs 
were detected at 1h, and only six upregulated DEGs emerged at 4h. 
In contrast, a marked increase was observed at later stages: 263 
common DEGs at 24h (250 upregulated, 13 downregulated; 

Figures 1A–B) and 302 DEGs at 48h (280 upregulated, 22 
downregulated; Figures 1C–D). A complete list of shared DEGs is 
provided in Supplementary Table 2. Given the limited overlap at 
the earlier time points (1h & 4h), subsequent analyses focused at 
24h and 48h. Heatmap comparison further revealed dynamic shifts, 
with several DEGs upregulated at 24h but downregulated at 48h, 
and vice versa (Supplementary Figure 4). These findings highlight 
the temporal complexity of transcriptional regulation post-AMI, 
suggesting that key mediators, such as Il6, may play stage-specific 
roles in the progression of cardiac fibrosis. 
 
Functional enrichment analysis of differentially expressed 
genes 
To further elucidate the cellular roles of the common DEGs, GO 
analysis and KEGG pathway enrichment analyses were performed. 
At 24h, GO analysis indicated enrichment in processes related to 
the inflammatory response, external side of the plasma membrane, 
and cell adhesion molecule binding (Figure 2A). Corresponding 
KEGG analysis revealed significant involvement in the IL-17 
signaling pathway, cytokine–cytokine receptor interaction, and 
hematopoietic cell lineage (Figure 2B). At 48h, GO terms were 
primarily enriched for inflammatory response, membrane raft, and 
actin binding (Figure 2C), while KEGG pathways included the IL-
17 signaling pathway, Salmonella infection, and Phagosome 
(Figure 2D). Collectively, these findings suggest a time-dependent 
shift in biological function, with early transcriptional changes 
linked to signaling and adhesion processes, followed by the 
activation of immune- and inflammation-related pathways at later 
stages. 
 

 
Figure 2: Top five (5) enriched Gene Ontology (GO) (left) and KEGG pathway (right) terms of combined common DEGs (upregulated and 
downregulated). (A & B) 24 h. (C & D) 48 h. GO: BP - Biological Process; CC - Cellular Components; MF - Molecular Functions. KEGG: Kyoto 
Encyclopedia of Genes and Genomes.
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GO and KEGG pathway analyses revealed significant enrichment 
of DEGs in pathways related to the inflammatory response and the 
IL-17 signaling pathway. These results reinforce the growing 
consensus that inflammation is a defining feature of cardiac 
remodeling and fibrotic progression following myocardial 
infarction (MI) (Zhang et al. 2024). While the canonical TGF-
β1/Smad signaling pathway has long been recognized as the 
principal driver of cardiac fibrosis (Saadat et al. 2021), our findings 
indicate that the IL-17 signaling pathway plays a significant role in 
this process. This observation is consistent with recent reports 
implicating IL-17–mediated signaling in myocardial remodeling 
and fibrosis after infarction (Chang et al. 2018; Sisto & Lisi 2024). 
In addition, tt was reported that IL-17 signaling pathway enhances 
the inflammatory response by increasing target mRNA 
transcription and promotes the functional activity of numerous 
target genes by controlling the stability of the transcribed mRNA 
via multiple pathways including NF-κB and MAPK pathways 
(Huangfu et al. 2023). Collectively, these findings not only expand 
the current understanding of fibrosis mechanisms but also position 
the IL-17 signaling pathway as a promising noncanonical 

therapeutic target for the prevention and treatment of post-MI 
cardiac fibrosis. 
 
Construction of network, analysis and extraction of modules 
To explore potential interactions among proteins encoded by the 
common DEGs, a protein–protein interaction (PPI) network was 
constructed using STRING and visualized in Cytoscape, with 
module extraction performed via the Cytoscape MCODE plugin. 
At 24h, the PPI network contained 256 nodes and 1,833 edges 
(Figure 3A), while at 48h, it expanded to 298 nodes and 1,918 
edges (Figure 3B). Module analysis identified highly 
interconnected clusters at both time points: a 31-gene module with 
an MCODE score of 23.4 at 24h, and a 32-gene module with an 
MCODE score of 23.806 at 48h. These tightly connected modules 
may represent key regulators and potential biomarkers of AMI and 
cardiac fibrosis progression. The identification of such modules 
underscores the time-dependent reorganization of molecular 
interactions and provided the basis for hub gene selection in 
subsequent analyses. 
 

 
Figure 3: Protein-Protein Interaction (PPI) network and module analysis. Network analysis of common DEGs at (A) 24 h and (B) 48 h. 
Subsequently, MCODE plugin of Cytoscape revealed the Sub-network with the highest MCODE Score (right figures, inset). Upregulated DEGs are in 
red while downregulated DEGs are in green.

A

MCODE Score = 23.4
24h PPI Network

MCODE Score = 23.806B 48h PPI Network
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Hub genes identification, functional enrichment and mRNA 
expression analysis  
Hub gene analysis was performed using the CytoHubba MCC 
algorithm in Cytoscape. The hub genes identified at 24h and 48h 
were intersected with the highly interconnected MCODE modules 
at each time point (Figures 5A–B, Supplementary Material). Venn 
diagram analysis (Figure 4A) revealed six overlapping hub genes: 
Il1b, Itgam, Mmp9, Ccl2, Il6, and Ptgs2 (Figure 4B). These genes 
occupy central positions within the PPI network, suggesting they 
act as key regulators in the molecular landscape of post-AMI 
cardiac fibrosis. Notably, each has been independently implicated 
in inflammation, extracellular matrix remodeling, or fibrotic 
signaling, and prior studies have highlighted their roles in 
pathological cardiac remodeling. The convergence of these hub 
genes in our analysis underscores their potential as critical 
biomarkers and therapeutic targets for mitigating fibrotic 
progression following AMI. 
 
Among the hub genes identified, Il-6 and Il1b emerge as central 
proinflammatory mediators in post-AMI remodeling. Il-6 promotes 
collagen deposition and interstitial fibrosis, with genetic deletion 
or pharmacological inhibition shown to attenuate fibrosis and 
preserve cardiac function in preclinical models, hence, Il6 could be 
a potential therapuetic target (Meléndez et al.,2010; González et al. 
2015; Kumar et al. 2019; Gałdyszyńska et al. 2020). Similarly, Il1b 
contributes to cardiomyocyte apoptosis and fibrotic remodeling 
(Hwang et al. 2001; Blyszczuk et al. 2009), although it has been 
reported that Il1b exert anti-fibrotic effects under specific 
conditions (Brønnum et al. 2013). Integrin αM (Itgam/CD11b), a 
broadly expressed transmembrane receptor, promotes 

cardiomyocyte hypertrophy and fibroblast differentiation during 
hypertension-induced remodeling. Its selective inhibition mitigates 
adverse remodeling via multiple pathways (Israeli-Rosenberg et al. 
2014; Zhang et al. 2024). Matrix metalloproteinase-9 (MMP-9), a 
key ECM-degrading enzyme, orchestrates inflammatory responses 
and contributes to fibrotic progression, while its inhibition confers 
protective effects against cardiac fibrosis (Deten et al. 2002; Iyer et 
al. 2016; Weng et al. 2016; Wang et al. 2024). Chemokine ligand 
2 (CCL2/MCP-1) drives recruitment of CCR2+ monocytes and 
macrophages, facilitating fibroblast activation and matrix 
deposition, while disruption of its signaling reduces myofibroblast 
infiltration and attenuates fibrosis in ischemia–reperfusion models 
(Rollins 1996; Dewald et al. 2005; Dobaczewski & Frangogiannis 
2009; Li & Frangogiannis 2021). Finally, Cyclooxygenase-2 
(COX-2/Ptgs2), an inducible prostaglandin-synthesizing enzyme, 
is strongly upregulated post-MI; its inhibition, whether 
pharmacological or through natural compounds such as 
periplocymarin, has been shown to suppress fibrosis and improve 
myocardial metabolism (LaPointe et al. 2004; Rumzhum & Ammit 
2016; Chi et al. 2017; Yun et al. 2021).   
 
Gene Ontology analysis highlights the hub genes roles in regulating 
vascular endothelial growth factor production and cytokine 
activity, reflecting contributions to both inflammation and vascular 
remodeling (Figure 4C), whereas KEGG pathway analysis 
positions these genes within the IL-17 signaling axis (Figure 4D). 
Collectively, these six hub genes represent key molecular drivers 
of inflammation, extracellular matrix remodeling, and fibroblast 
activation in post-AMI pathology. 
 

 
Figure 4: Hub genes identification and functional enrichment analysis. (A) Venn diagram showing the six (6) hub genes at the center overlapping 
between the MCC algorithm of Cytohubaa (at 24 h and 48 h) and Module 1 (M1, at 24 h and 48 h) of the PPI Network. (B) the six (6) hub genes. (C) 
Top five (5) highly enriched Gene Ontology terms using the six (6) hub genes. (D) Top five (5) highly enriched KEGG pathway of six (6) hub genes 
GO: BP - Biological Process; CC - Cellular Components; MF - Molecular Functions. KEGG: Kyoto Encyclopedia of Genes and Genomes. 

BA

DC



 
                                                                                                             Volume No. 19 | Issue No. 01 | 2026 

SciEnggJ 
6 

Validation using the GSE775 and GSE4648 datasets confirmed 
differential expression of all six hub genes (Il1b, Itgam, Mmp9, 
Ccl2, Il6, and Ptgs2) in AMI samples. In GSE775, mRNA 
expression of all six hub genes was significantly upregulated in 
AMI versus control samples at 24h and 48h (P < 0.01, Figure 5A-
B). In GSE4648, all six-hub gene were upregulated at 24h (P < 
0.05, Figure 5C), while only Il1b, Mmp9, Ccl2, and Ptgs2 were 

significantly upregulated at 48h (P < 0.05, Figure 5D). These 
results corroborate their active involvement in post-infarction 
inflammation and fibrosis, reinforcing their potential as therapeutic 
targets to mitigate cardiac remodeling and prevent progression to 
heart failure. 
 

 
Figure 5: mRNA expression levels of the six (6) common hub genes. (A) 24 h and (B) 48 h in GSE775; (C) 24 h and (D) 48 h in GSE4648. Data 
is presented as mean + SEM. A p-value < 0.05 was considered statistically significant relative to the control. *p-value < 0.05; **p-value < 0.01; ***p-
value <0.001; ****p-value <0.0001; ns - not significant.

Notably, many of these hub genes—particularly Il6, Il1b, CCL2, 
and MMP9—are recognized downstream effectors and regulated 
by IL-17 signaling axis (Amatya et al. 2017). This mechanistic link 

underscores the relevance of the IL-17 pathway in coordinating the 
activity of these hub genes, may provide strategies for designing 
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novel therapeutic strategies for IL-17-mediated signaling and 
inflammation (Amatya et al. 2017). 
 
Mapping the Transcription factors-Hub gene interaction 
landscape  
Cardiac transcription factors (TFs) are critical regulators of cardiac 
remodeling, influencing fibrosis by modulating gene expression 
related to hypertrophy and fibroblast activation (Hong & Zhang 
2022). To elucidate potential upstream regulators of the six hub 
genes (Il1b, Itgam, Ccl2, Mmp9, Il6, and Ptgs2), we performed 
TRRUST analysis and assessed their differential expression in the 
GSE775 and GSE4648 datasets. A total of 17 TFs were initially 

predicted (see Supplementary Table 2); however, only a five (5) 
TFs (i.e., NFKB1, PPARA, EGR1, FOS and C/EBPβ) exhibited 
differential expression across both datasets as shown in Table 1. 
These findings highlight a set of transcriptional regulators that may 
orchestrate hub-gene expression following AMI inflammatory and 
fibrotic responses, providing mechanistic insight into the 
regulatory networks driving cardiac fibrosis progression. 
 
 
 
 

Table 1: Key transcription factors (TFs) of hub genes. Presented are the validated TFs to be differentially expressed in both datasets at 24h and 
48h. 

Key TF Description Hub genes p-value 

NFKB1 nuclear factor of kappa light polypeptide gene enhancer 
in B cells 1, p105 Il1b, Itgam, Ccl2, Mmp9, Il6, Ptgs2 8.36E-13 

C/EBPβ CCAAT/enhancer binding protein (C/EBP), beta Il1b, Il6, Ptgs2 1.63E-07 
EGR1 early growth response 1 Il1b, Ccl2, Mmp9 8.08E-07 

PPARA peroxisome proliferator-activated receptor alpha Il6, Ptgs2 7.46E-05 
FOS FBJ osteosarcoma oncogene Mmp9, Il6 0.000111 

Nuclear factor-KB (NFKB), is a central mediator of inflammatory 
signaling and traditionally viewed as a proinflammatory driver of 
adverse remodeling (Kawamura et al. 2005; Brown et al. 2005; 
Frantz et al. 2006; Kawano et al. 2006; Tas et al. 2009). Emerging 
evidence suggests a context-dependent cardioprotective role for 
NFKB, including anti-inflammatory signaling, ECM remodeling, 
and oxidative stress mitigation (Santos et al. 2010). Peroxisome 
proliferator-activated receptor α (PPARα), is a key regulator of 
fatty acid oxidation and metabolic homeostasis, also modulates 
cardiac inflammation (Lin et al. 2022). PPARα deficiency reported 
to increase expression of fibrotic (collagen I, MMP-2) and 
inflammatory (IL-6, TNF-α, COX-2) markers (Smeets et al. 2008). 
PPARα activation by fenofibrate attenuates fibrosis and 
inflammation in Trypanosoma cruzi–infected mice by 
downregulating MMP-9 and connective tissue growth factor 
(CTGF) (Cevey et al. 2017). The FOS family of transcription 
factors (Fos, FosB, Fra-1, Fra-2), components of the AP-1 
complex, are highly expressed in cardiac fibroblasts and contribute 
to hypertrophy, inflammation, and fibrosis (Dai et al. 2013; Wang 
et al. 2009; Whitehead et al. 2023). Among these, Fos-like 2 (Fra-

2/Fosl2) has been specifically linked to exacerbated myocardial 
fibrosis, arrhythmogenesis, and maladaptive stress responses under 
immunofibrotic conditions (Seidenberg et al. 2021; Stellato et al. 
2023). Early growth response-1 (Egr-1), a master transcriptional 
regulator of inflammatory and apoptotic genes and its silencing 
mitigates myocardial injury and remodeling (Khachigian 2006; 
Rayner et al. 2013). CCAAT/enhancer-binding protein β 
(C/EBPβ), a member of the C/EBP transcription factor family, has 
also been implicated in fibrotic signaling cascades in the heart and 
other organs (Wang et al. 2022a).  
 
Further expression analysis revealed that NFKB1, EGR1, FOS 
(both in 24h and 48h) and C/EBPβ (48h only) were significantly 
upregulated in AMI samples, whereas PPARA was higher in 
controls both in GSE775 and GSE4648 (P < 0.05, Figure 6A-D); 
only FOS at 48h in GSE4648 was not significantly elevated (P > 
0.05, Figure 6D). These results underscore the complex and 
dynamic regulatory roles of TFs, with distinct temporal and 
dataset-dependent patterns. 
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Figure 6: mRNA expression levels of differentially expressed transcription factors (TFs). (A) 24 h and (B) 48 h in GSE775; (C) 24 h and (D) 48 
h in GSE4648. Data is presented as mean + SEM. A p-value < 0.05 was considered statistically significant relative to the control. *p-value < 0.05; **p-
value < 0.01; ***p-value <0.001; ns - not significant.

Interestingly, both NFKB and C/EBPβ pathways are reported to be 
regulated by the IL-17 signaling axis, which modulates the 
expression of downstream target genes and can either activate or 

inhibit these pathways via feedback regulation (Amatya et al. 2017; 
Huangfu et al. 2023). Despite these insights, further studies are 
needed to elucidate how NFKB and C/EBPβ can be precisely 
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manipulated in vitro to maintain immune homeostasis and develop 
targeted therapeutic strategies (Vidal et al. 2021). 
 
Mapping the miRNA-Hub gene interaction landscape 
MicroRNAs (miRNAs) are small, non-coding RNAs that modulate 
gene expression primarily by regulating mRNA translation and 
degradation (Balasundaram & Priya, 2023). They have been 
implicated as critical regulators of cardiac fibrosis through their 
targeting of extracellular matrix (ECM)–related genes and 
components of the TGF-β signaling pathway (Wang et al. 2016). 
Owing to their central role in fibrotic remodeling, miRNAs are 
increasingly recognized as promising therapeutic targets (Samanta 
et al. 2016).  
 
To further elucidate the regulatory mechanisms influencing the 
identified hub genes, a miRNA-gene interaction network was 

constructed using the miRnet tool. This network aimed to identify 
key miRNAs involved in the regulation of top hub genes and 
explore potential post-transcriptional regulatory relationships. As a 
result, initially, there were 51 nodes (six genes and 45 miRNAs) 
and 68 edges in the miRNA‒mRNA network (Figure 7A). The 
network was subsequently examined using the Steiner Forest 
network in miRnet and revealed 11 nodes (six genes and five 
miRNAs) and ten edges (Figure 7B). These findings suggest a more 
refined regulatory interaction between miRNAs and hub genes, 
with a reduced set of miRNAs playing a central role in modulating 
gene expression within the identified network. In the present study, 
we constructed a putative miRNA–mRNA regulatory network, 
revealing that the six hub genes—Il-6, Il1b, Itgam, Mmp9, Ccl2 and 
Ptgs2 - are likely regulated by mmu-miR-223-3p, mmu-miR-196b-
5p, mmu-miR-181a-5p, mmu-miR-122-5p and mmu-let-7c-5p. 
 

 
Figure 7: The miRNA‒mRNA regulatory network of six (6) common hub genes. (A) The initial miRNA‒mRNA network using miRnet; (B) The final 
miRNA‒mRNA network using miRnet with the Steiner Forest network method. The green squares represent miRNAs, while the red circles represent 
mRNAs (6 common hub genes).

A B
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The miR-223-3p used to be called miR-223 and was reported to 
promote hypoxia-induced cardiomyocyte injury (Tang et al. 2018) 
and induce myocardial fibrosis (Liu et al. 2016). However, miR-
223-3p was also reported to exert protective effects on the I/R-
induced inflammatory response and cardiomyocyte necroptosis 
(Qin et al. 2016). An earlier study established that the 
downregulated endothelial miR-196b-5p inhibits the angiogenic 
functions of endothelial cells in vitro and suppressed skin wound 
healing in vivo (Ren et al. 2023). A recent study also reported that 
overexpression of miR-196b-5p regulates fibrosis in vitro by 
suppressing TGF-β-induced upregulation of COL1A2 (Baral et 
al. 2021) and reduce production of inflammatory cytokines, such 
as IL-6 and TNF-α (Yuan et al. 2018). The miR-181 family 
regulates vascular inflammation and immunity (Sun et al. 2014). It 
was reported that miR181a-5p overexpression was also found to 
inhibit myocardial inflammation and oxidative stress in vitro by 
targeting activating transcription factor 2 (ATF2) (Liu et al. 2020). 
 
MiR-122-5p has pleiotropic biological functions, and its level is 
correlated with liver fibrosis (Cao et al. 2018). However, previous 
study demonstrated that by upregulating the expression of miR-
122-5p, it inhibits isoproterenol-induced myocardial fibrosis in 
vivo (Wang et al. 2022b), however, it exacerbates angiotensin II-
induced cardiac fibrosis and dysfunction in hypertensive rats 
(Song et al. 2022). As a member of the let-7 family, let-7c-5p is 
essential for cell growth and proliferation (Hertel et al. 2012). Let-
7c-5p was upregulated in patients with advanced heart failure 
compared with healthy patients, which supports using these 
microRNAs as potential biomarkers and might be involved in 
disease progression, including cardiac fibrosis (Marques et 
al. 2016). 
 
This study identifies a set of candidate biomarkers—including hub 
genes, transcription factors, and microRNAs—that may inform the 
development of targeted therapeutic strategies for acute myocardial 
infarction (AMI). Future studies should validate these findings 
through quantitative assessments of RNA and protein expression 
levels in both in vitro and, ideally, in vivo models. Based on our 
analysis, we anticipate a pronounced upregulation of the identified 
biomarkers within 24–48h following AMI. Notably, the 
inflammatory response and IL-17 signaling pathway emerged as 
key drivers of cardiac fibrosis, highlighting their potential as 
therapeutic targets. Existing treatments, such as plasmapheresis or 
therapeutic plasma exchange, may serve as adjunctive therapies for 
high-risk AMI patients. However, the success of such interventions 
hinges on the identification of precise biomarkers to guide 
treatment selection and timing. While animal models remain 
essential for mechanistic validation, their cost, complexity, and 
duration pose practical limitations. In this context, computational 
approaches offer a scalable, efficient alternative for early-stage 
biomarker discovery, providing a foundation for hypothesis-driven 
experimental studies. 
 
This study has several limitations. First, the analysis was conducted 
entirely in silico and requires validation through experimental 
models. Second, due to limited availability of suitable datasets, 
only two relevant mouse microarray datasets modeling AMI were 
analyzed. Third, one of these datasets (GSE4648) includes only 
two biological replicates per group, which may limit statistical 
power and the resolution of differentially expressed gene (DEG) 
identification. Lastly, reliance on mouse data constrains direct 
translational relevance, underscoring the need for expanded 
datasets and cross-species validation in future studies. 
 
 
CONCLUSION 
 
In conclusion, this study presents a comprehensive bioinformatics 
analysis of differentially expressed genes and signaling pathways 

implicated in cardiac fibrosis following AMI. The key findings of 
the study was the identification of key regulators and candidate 
biomarkers potentially involved in the progression of cardiac 
fibrosis following AMI. These key regulators and biomarkers, 
while previously associated with AMI, may also contribute to 
fibrotic remodeling, as supported by existing literature, and may be 
use in disease screening and detection, diagnosis and drug 
development. Our findings shows the multifaceted landscape of 
cardiac fibrosis following AMI and offer a foundation for the 
development of targeted therapies. Further mechanistics validation 
through in vitro and in vivo experiments is recommended to further 
support the findings translational clinical applications. 
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SUPPLEMENTARY MATERIAL 
 

 
Supplemental Figure 1: Workflow of microarray integrated meta-analysis. (A) The selection process of eligible microarray datasets for the shared 
signatures between AMI and the mouse model. (B) Depiction of the flow chart of the process involved in the integrated meta-analysis of the selected 
microarray datasets. 
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Supplemental Figure 2: Volcano plot displaying the DEGs of GSE775 at different time points. Blue points represent downregulated genes, red 
points represent upregulated genes, and gray points represent genes showing no significant difference in expression between AMI and control (the 
threshold for significance: |log2FC| > 1.0 at adjusted p-value < 0.05). The P value was adjusted using the Benjamini‒Hochberg (false discovery rate) 
procedure. 
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Supplemental Figure 3: Volcano plot displaying the DEGs of GSE4648 at different time points. Blue points represent downregulated genes, red 
points represent upregulated genes, and gray points represent genes showing no significant difference in expression between AMI and control (the 
threshold for significance: |log2FC| > 1.0 at adjusted p-value < 0.05). The P value was adjusted using the Benjamini‒Hochberg (false discovery rate) 
procedure. 
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Supplemental Figure 4: Heatmap of the common DEGs expressed in both GSE775 and GSE4648 at 24 h and 48 h. Each column represents the 
dataset at a specific time point, and each row indicates the DEGs showing common upregulated DEGs (red) and downregulated DEGs (green). The 
color shading indicates the magnitude of differential expression (|Log2FC| value). 
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Supplemental Figure 5: Hub genes identified using the MCC plug-in of cytoHubba. Network of all identified Hub genes for the combined data at 
(A) 24h and (B) 48h. 

Supplemental Table 1: Differentially expressed genes (DEGs) between AMI group sham-control group. |Log2FC| > 1 and an adjusted p-value 
of < 0.05 

A. Differentially expressed genes per dataset per time points 

Datasets Expression Level 1 h 4 h 24 h 48 h 

 
 
GSE775 

Upregulated 14 159 597 1,075 

Downregulated 5 72 503 939 

Total DEGs 19 231 1,100 2,014 

Grand Total DEGs 3,364 

 
GSE4648 

Upregulated 0 7 353 346 

Downregulated 2 2 23 26 

Total DEGs 2 9 376 372 

Grand Total DEGs 759 

B. Common upregulated and downregulated DEGs per time points between GSE775 & GSE4648 

 Expression Level 1 h 4 h 24 h 48 h 

 Upregulated 0 6 250 280 

 Downregulated 0 0 13 22 

 Total DEGs 0 6 263 302 

 Grand Total DEGs 571 

 
Supplemental Table 2: Common upregulated and downregulated DEGs at different time points. |Log2FC| > 1 and an adjusted p-value of < 0.05 

Time point Upregulated Downregulated 
1h none none 
4h Bhlhe40 Egr1 Hspa1b Gadd45g Fos Atf3 none 
24h Dnajb1 Mapk6 Ccl6 Angptl4 Bhlhe40 Tgif1 Fam107b Nop16 Mmp8 

Capza1 Dusp6 Angpt2 Cd24a Tyrobp Slc11a1 Nip7 Gadd45b 
Txnrd1 Ndrg1 Atf4 Acsl4 Odc1 Capg Synpo Inhbb Napsa Ier2 
Tubb6 Slpi Il17ra Fosl1 Ltb Rhoc Ccl7 Ereg Chil3 Il4ra Gm12854 
/// Gm5068 /// LOC102637129 /// S100a11 Ccl12 Plac8 

Selenbp1 Cpxm2 Cdkn1c Inmt Fah 
Mettl20 Ift81 Art1 Acot1 Ptgds Gmnn 
Ttc30b Ank1 
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2610042L04Rik /// Gm10340 /// Gm10406 /// Gm10409 /// 
Gm16525 /// Gm2897 /// Gm3002 /// Gm3095 /// Gm3115 /// 
Gm3164 /// Gm3173 /// Gm3239 /// Gm3252 /// Gm3264 /// Gm3373 
/// Gm3383 /// Gm3500 /// Gm3558 /// Gm3636 /// Gm3642 /// 
Gm3667 /// Gm3696 /// Gm3739 /// Gm5796 /// Gm6356 /// 
LOC100861615 /// LOC102638110 Kit Tpm4 Gsr Rassf5 Rtn4 Ppan 
Fhl1 Hbegf Vcan Gm9835 /// Gmfg Bcl2a1a /// Bcl2a1c /// Bcl2a1d 
Fcgr2b Timp1 Slc20a1 Cd52 Myc Pglyrp1 Dab2 Fam49b Fpr1 Uck2 
Socs3 Tfpi2 Litaf Map3k8 Klf6 Cd14 Arg2 Tiparp Gna13 Sele Csf3r 
Cxcl2 F10 Gdf15 Ccl2 Gm11787 /// Lyn Lox Cmip Upp1 Marcksl1 
S100a8 Vcam1 Plaur Cldn5 Itga5 Ncf2 Csf2 Adam8 Ptgs2 Cytip 
Ctgf Rasd1 Icam1 Thbd Kdelr3 Ccr2 Gm10693 /// Gm14548 /// 
Gm15448 /// Lilra6 /// Pira1 /// Pira11 /// Pira2 /// Pira4 /// Pira5 /// 
Pira6 /// Pira7 /// Pirb S100a9 Fos Myh9 Gch1 Cxcl5 Eno1 /// Eno1b 
Nop56 Atf3 Wfdc21 Errfi1 Pald1 /// Thbs1 Itgam Tgfbi Procr Nfe2 
2610042L04Rik /// Gm10340 /// Gm10409 /// Gm16525 /// Gm2897 
/// Gm3002 /// Gm3095 /// Gm3115 /// Gm3164 /// Gm3173 /// 
Gm3239 /// Gm3264 /// Gm3373 /// Gm3383 /// Gm3500 /// Gm3558 
/// Gm3636 /// Gm3642 /// Gm3667 /// Gm3696 /// Gm3739 /// 
Gm5796 /// Gm6337 /// Gm6356 /// LOC100861615 /// 
LOC102638110 Fubp1 Sertad1 Iqgap1 Cxcr2 Hck Ero1l Slfn4 Cd44 
Nppb Ctss Ugdh Ctsz LOC102633627 /// LOC102641281 /// Tpm4 
Ankrd2 Diap1 Casp4 Tmem45a Pprc1 Tpd52 Il1r2 Egr1 Pvr Selplg 
Bcl2a1a /// Bcl2a1b /// Bcl2a1c /// Bcl2a1d /// Mthfs Ccl9 Adss Xirp1 
Phlda1 Selp Actg1 Cyr61 Ch25h Msn Wsb1 Gadd45g Ier3 Aldh1a2 
Sphk1 Emp1 Zfp36 Gp49a /// Lilrb4 Junb Pgm1 Clec4d Cd53 Ncf4 
Nppa Pdlim7 Igfbp3 Sat1 Glrx Hmox1 Spp1 Basp1 Sdcbp Slfn3 /// 
Slfn4 Btg1 Rnf149 Mest Utp18 Ngf Adm Akap12 Nes Gp49a Itgb2 
Anxa2 Slc2a1 Hp Nop58 Hif1a Nfil3 Fxyd5 Serpine1 Fpr2 Plk2 
Il1rn Syncrip Gnl3 Ccr1 Fgl2 Pdpn Slc39a6 Mmp12 Azin1 Irg1 
Lcp2 Mmp9 Rell1 Ptpn1 Il6 Ell2 Smad1 Hdc Il1b Hsp90aa1 Hspa1b 
Eif1a Slfn1 Serpinb2 Clic1 /// Sept9 Lgals3 Nifk Rassf1 Pfkp Lrrfip1 
Snhg1 Enah Tnc Tes Msr1 Srgn Apbb1ip Ctla2b Id2 Ptpn2 Irf8 
Sema7a Ctla2a /// Ctla2b Ptx3 Psat1 Rasl11b Lcp1 Ifitm6 Nfkbiz 
Ifrd1 Hspa1a Cxcl1 Actn1 Fndc3a Slfn2 Osmr Ptpre Vasp Arg1 

48h BC037034 Mcam Pabpc1 Tram1 Mmp8 Actn4 Ifi30 Mcm3 Cd24a 
Tyrobp Gadd45b Ndrg1 Acsl4 Cmtm3 Odc1 Synpo Tagln2 Nme1 
Tubb6 Tmsb10 Cfl1 Ccl7 Gm12854 /// Gm5068 /// LOC102637129 
/// S100a11 Plac8 Atxn10 Dynll1 Rtn4 Fhl1 Hbegf Nid2 Ppp1r14b 
Timp1 Slc20a1 Cd52 Rgs19 Myc Prmt1 Fam49b Fpr1 Lrrc59 
D17H6S56E-5 Litaf Srsf9 Pla2g7 Cxcl2 Flnb Plaur Uba5 Nras Ncf2 
Ptgs2 Cytip Npm1 Ctgf Creld2 Ccr2 Gm10693 /// Gm14548 /// 
Gm15448 /// Lilra6 /// Pira1 /// Pira11 /// Pira2 /// Pira4 /// Pira5 /// 
Pira6 /// Pira7 /// Pirb Fos S100a9 Crct1 Eno1 /// Eno1b Nop56 Atf3 
Wfdc21 Procr Edem1 Nppb Ctss Ctsz LOC102633627 /// 
LOC102641281 /// Tpm4 Ankrd2 S100a10 Il1r2 Wbp5 Selplg 
Akr1b8 Ccl9 Cyr61 Wsb1 Nsun2 Gadd45g Anp32b Clec4d Col18a1 
Ncf4 Lyz1 /// Lyz2 Igfbp3 Cks2 Spp1 Basp1 Rnf149 Btg1 Mest Ngf 
Evi2a Itgb2 Anxa2 Serpine1 Fpr2 Il1rn Pdpn Azin1 Mmp9 Rell1 
Prkcdbp Il6 Ell2 Eif1a Ctsc Clic1 /// Sept9 Casp3 Nifk Lgals3 Rassf1 
Pfkp Lrrfip1 Rcan1 Msr1 Srgn Apbb1ip Ctla2b Ampd3 Ctla2a /// 
Ctla2b Rasl11b Lcp1 Ptprc Nhp2 Map2k1 Eps8 Hspa1a Col4a1 
Acsl5 Actn1 Fndc3a Tubb2a Osmr Arg1 Mapk6 Cnn2 Tuba1a Pdk3 
Cct3 Tardbp Tgif1 Nop16 Pcna Ptbp3 Capza1 Angpt2 Stbd1 Txnrd1 
Tmem167 Postn Capg Usp1 Cxcr4 Mmp3 Slpi Anxa1 Mfap5 Tsr1 
Morf4l2 Acot9 Chil3 Tpm4 Gsr Cks1b Bcl2a1a /// Bcl2a1c /// 
Bcl2a1d Fcgr2b Sgpl1 Pglyrp1 Uck2 Socs3 Col5a2 Mob1a Tfpi2 
Tubb5 Cd14 Gna13 Manf F10 Ccl2 Lox Sfxn1 Marcksl1 S100a8 
Fcgr1 Ccr5 Itga5 Adam8 Arhgap1 Rbp1 Sfpq Kdelr3 Myh9 Cxcl5 
Errfi1 Pald1 /// Thbs1 Tgfbi Itgam Fam13b Sprr1a Iqgap1 Hck Ero1l 
Spi1 Slfn4 Snrpa1 Ugdh Diap1 Adam9 Tmem45a Tpd52 Bcl2a1a /// 
Bcl2a1b /// Bcl2a1c /// Bcl2a1d /// Mthfs Adss Ch25h Msn 
D15Ertd621e Ier3 Gp49a /// Lilrb4 Cyba Pgm1 Arf6 Cd53 Nppa 
Pgam1 Pdlim7 Pdia6 Rbms1 Nucb2 Nes Gp49a Gusb Cdr2 Slc2a1 
Hp Fbln2 Nop58 Fxyd5 Smc2 Lxn Ccr1 Slc39a6 Rrbp1 Mmp12 Cfp 
Crlf1 Coro1c Ptpn1 Sec61a1 Smad1 Il1b Hsp90aa1 Hspa1b Cd68 
Slfn1 Serpinb2 S100a4 Atp13a3 Vcl Csrp1 Tnc Enah Tes Lmna 
Sema7a Psat1 Bgn Fkbp1a Srm Ifitm6 Nfkbiz Cyfip1 Anxa3 Cotl1 
Ifrd1 Tuba1c Cxcl1 Vasp Cd93 

Tcea3 Hsdl2 Hadh Sult1a1 Slc2a4 
Pla2g12a Aqp1 Sesn1 Mgst3 Cpxm2 
Adh1 Inmt Fah Mlf1 Thrsp Echs1 Ift81 
Art1 Acot1 Ptgds Eci1 Pxmp2 
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Supplemental Table 3: Key transcription factors (TFs) of hub genes. 

Key TF Description Hub genes p-value 

NFKB1 nuclear factor of kappa light polypeptide 
gene enhancer in B cells 1, p105 IL1b, Itgam, Ccl2, Mmp9, IL6, Ptgs2 8.36E-13 

Jun jun proto-oncogene IL1b, Ccl2, Mmp9, IL6, Ptgs2 6.11E-11 

Rela v-rel reticuloendotheliosis viral oncogene 
homolog A (avian) Ccl2, Mmp9, IL6, Ptgs2 1.77E-08 

Cebpb CCAAT/enhancer binding protein (C/EBP), 
beta IL1b, IL6, Ptgs2 1.63E-07 

Sp1 trans-acting transcription factor 1 Ccl2, Mmp9, IL6, Ptgs2 4.46E-07 
Ets1 E26 avian leukemia oncogene 1, 5' domain Ccl2, Mmp9, Ptgs2 4.60E-07 

Ep300 E1A binding protein p300 Mmp9, IL6, Ptgs2 4.85E-07 
Egr1 early growth response 1 IL1b, Ccl2, Mmp9 8.08E-07 
Etv4 ets variant 4 Mmp9, Ptgs2 7.60E-06 
Ahr aryl-hydrocarbon receptor IL6, Ptgs2 1.67E-05 
Sirt1 sirtuin 1 Mmp9, IL6 2.35E-05 
Rel reticuloendotheliosis oncogene IL1b, Ccl2 2.73E-05 

Ppara peroxisome proliferator activated receptor 
alpha IL6, Ptgs2 7.46E-05 

Smad3 SMAD family member 3 Ccl2, Mmp9 8.47E-05 
Fos FBJ osteosarcoma oncogene Mmp9, IL6 0.000111 

Stat3 signal transducer and activator of 
transcription 3 Mmp9, IL6 0.000221 

Sp3 trans-acting transcription factor 3 IL6, Ptgs2 0.000244 

 
 
 
 
 
 
 
 
  
 

 
 
 
 

 


